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A B S T R A C T   

Recent research on artificial intelligence indicates that machine learning algorithms can auto-generate novel 
drug-like molecules. Generative models have revolutionized de novo drug discovery, rendering the explorative 
process more efficient. Several model frameworks and input formats have been proposed to enhance the per-
formance of intelligent algorithms in generative molecular design. In this systematic literature review of 
experimental articles and reviews over the last five years, machine learning models, challenges associated with 
computational molecule design along with proposed solutions, and molecular encoding methods are discussed. A 
query-based search of the PubMed, ScienceDirect, Springer, Wiley Online Library, arXiv, MDPI, bioRxiv, and 
IEEE Xplore databases yielded 87 studies. Twelve additional studies were identified via citation searching. Of the 
articles in which machine learning was implemented, six prominent algorithms were identified: long short-term 
memory recurrent neural networks (LSTM-RNNs), variational autoencoders (VAEs), generative adversarial 
networks (GANs), adversarial autoencoders (AAEs), evolutionary algorithms, and gated recurrent unit (GRU- 
RNNs). Furthermore, eight central challenges were designated: homogeneity of generated molecular libraries, 
deficient synthesizability, limited assay data, model interpretability, incapacity for multi-property optimization, 
incomparability, restricted molecule size, and uncertainty in model evaluation. Molecules were encoded either as 
strings, which were occasionally augmented using randomization, as 2D graphs, or as 3D graphs. Statistical 
analysis and visualization are performed to illustrate how approaches to machine learning in de novo drug design 
have evolved over the past five years. Finally, future opportunities and reservations are discussed.   

1. Introduction 

Machine learning, a subtype of artificial intelligence constituting an 
algorithm able to improve itself independent of human intervention, has 
gained immense popularity in the medical industry since its advent [1]. 
The technique can automate processes that would otherwise consume a 
considerable amount of time and resources, making accessible, efficient 
healthcare a more realistic objective. In the field of medicinal chemistry, 
computational methods have been applied in many areas of the drug 
discovery process, including the evaluation of compound similarity, 
molecule classification, and bioactivity prediction [2]. Further attempts 
to yield safe and efficacious drug-like compounds indirectly, for 
example, by identifying propitious targets rather than concentrating on 
the properties of small molecules, have been explored through the 
integration of machine learning. Numerous studies have enabled the 
classification of promising macromolecular targets, even aiding in the 
discovery of drugs now approved by the FDA [3,4]. Virtual screening, 
however, can only contribute so much. Because virtual screening 

requires the navigation of large chemical spaces, exploring them can be 
computationally expensive [5,6]. If the costs incurred by such methods 
exceed their benefits, it cannot be responsibly argued that computa-
tional approaches are inherently efficient. 

Recently, more advanced machine learning models devised to 
generate new information have been proposed, among them recurrent 
neural networks (RNNs) [7], generative adversarial networks (GANs) 
[8], and variational autoencoders (VAEs) [9]. These techniques have 
been related to a wide range of problems, including sentimental text 
generation, music composition, inpainting, and trajectory prediction, 
among many others [10–13]. With an expanding body of evidence to 
support the application of machine learning to complex problems, the 
potential for mechanistic, de novo compound generation has gained 
extensive attention. Various models have since been devised to accom-
plish this task, each offering insight into the relative value of different 
generative methods. In the context of drug discovery, machine 
learning-informed drug development constitutes an improvement to 
manual virtual screening in that it is both automated and adaptable 
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without imposing a significant computational burden [14]. As such, 
these generative models could revolutionize the future of pharmaceu-
tical engineering. Generating novel drug-like substances in silico is a 
multifaceted issue that cannot be addressed without an understanding of 
the great volume of research currently available. Evidently, the inter-
connectivity between medical research and informatics has substantial 
implications for the expanding efficiency and precision of pharmaco-
logical innovation, introducing opportunities to extend novel treatments 
at a reduced cost. Identifying areas in need of improvement, along with 
existing solutions, is essential to the attainment of this objective. Models 
capable of generating new drug-like compounds demonstrate great 
promise, as indicated by the evolving library of studies dedicated to 
assessing their performances. Moreover, the ability to emulate the 
complexities of chemical space using computational tools would denote 
that similarly complicated questions in medicine are within the scope of 
intelligent algorithms. 

In this systematic review, the evolution of the use of generative 
machine learning algorithms in de novo drug discovery over the past 
five years is examined comprehensively. Answers to the following 
research questions were pursued:  

1. Which machine learning models are implemented to generate novel 
molecular structures de novo?  

2. Which challenges related to this machine learning problem have 
researchers addressed?  

3. How are molecular structures encoded in the context of machine 
learning? 

While some recent reviews have addressed the role of artificial in-
telligence in drug development, these broad overviews do not provide 
detailed insight regarding generative methods, instead limiting discus-
sion on studies of generative drug design to brief summaries of selected 
developments [15,16]. The breadth of models discussed is too narrow to 
reflect the full scope of this machine learning task, especially consid-
ering the rate at which novel solutions have emerged [17]. Here, a 
diverse collection of studies, representative of recent advancements in 
the discipline, is presented in an exhaustive systematic review. Notably, 
changes in the use of specific machine learning models, molecular 
encoding techniques, and challenges addressed over the past five years 
are described by means of statistical analysis. This technique facilitates 
the presentation of the appreciable volume of information associated 
with this application of machine learning. Developers and researchers 
may use this publication to inform their methodologies and approaches 
to de novo drug discovery in silico. Additionally, inferences may be 
made about the evolving relationship between medicine and artificial 
intelligence. 

2. Conceptual background 

To understand the answers to the proposed review questions, a 
summary of the terminology applied in computational chemistry and 
generative machine learning is provided. 

2.1. Generative machine learning models 

2.1.1. RNN 
In 1986, David Rumelhart introduced neural backpropagation, a 

learning procedure in which weights are adjusted based on the calcu-
lated loss function gradient such that the output values might better 
resemble the input [7]. This principle would inspire the RNN architec-
ture (Fig. 1a.). RNNs possess a memory, or internal state, which enables 
them to detect patterns in inputs of variable lengths. RNNs may also 
have additional storage states controlled by a neural network, either 
internally or externally. LSTM and gated GRUs are two common ex-
amples of these controlled storage states. In LSTM-RNN (Fig. 1b.), the 
vanishing gradient problem often encountered in backpropagation is 

less likely to occur. Similar to LSTM, the GRU model differs only in that 
it incorporates fewer parameters and excludes an output gate (Fig. 1c.). 

2.1.2. GAN 
The GAN machine learning architecture was proposed in June 2014 

by Ian Goodfellow and his colleagues [8] (Fig. 2). In a GAN, two neural 
networks compete in a zero-sum game. In other words, when one of the 
algorithms succeeds at the specified task, or “wins,” the other “loses.” 
The first of the two competitors, called a generative network, attempts to 
mimic the input, while the discriminative network determines whether 
the data was generated artificially. The objective of the generative 
network is to “fool” the discriminator such that the synthesized images 
are classified as components of the true data distribution. When the 
composition proposed by the generator is incorrectly classified as 
genuine by the discriminator, it is considered to be at an advantage, 
while the opposite is true for the discriminator network. “Mode 
collapse” is a common problem in GANs, in which they fail to detect 

Fig. 1. Three varieties of recurrent neural networks, including (a) a standard 
RNN, (b) an LSTM-RNN, and (c) a GRU-RNN. The inputs are represented by xt, 
the current input; Ct-1, the cell state; and ht-1, the hidden state. The outputs are 
Ct, the next cell state, and ht, the new output. The nonlinearities are represented 
by σ and tan h, the sigmoid and hyperbolic tangent layers, respectively. Finally, 
the × and + operators indicate pointwise multiplication and addition. 
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several modes from the input data. A GAN suffering mode collapse will 
only generate a very limited range of outputs, if not merely a single 
output. 

2.1.3. AE 
Autoencoders (AEs) are used to accomplish unsupervised machine 

learning tasks. While AEs in general have a wide variety of applications 
in machine learning, variational AEs (VAEs) are particularly conven-
tional generative algorithms (Fig. 3). Introduced by Diederik P. Kingma 
and Max Welling, the VAE is able to encode and decode information just 
as a standard autoencoder would [9]. However, unlike the simple 
autoencoder, it is a probabilistic model, rather than a deterministic 
model. Input is encoded as a latent distribution. Before decoding the 
input, the latent representation is sampled from the distribution. The 
output depicts the decoded manifestation of the sampled latent 
representation. 

Adversarial AEs (AAEs) are another form of probabilistic AE that use 
a GAN to match the aggregated posterior of the latent representation to 
the prior distribution [18] (Fig. 4). The original AAE paper describes a 
model that includes both a traditional reconstruction error criterion and 
an adversarial training criterion. A sample is taken from a distribution 
chosen by the user and evaluated by the discriminator for its resem-
blance to the training data. 

2.1.4. Evolutionary algorithm 
Evolutionary algorithms are population-based models, often inspired 

by biological evolution, constructed to solve optimization problems 
[19]. Several operators (Fig. 5) can be applied to individual data points 
to modify their characteristics and evaluate their fitness for a given 
objective. Genetic algorithms are a subtype of evolutionary algorithms, 
in which solutions to an optimization problem are encoded as strings 

and subjected to operators. Another application of the evolutionary al-
gorithm is genetic programming, in which a program’s fitness is assessed 
in terms of its ability to complete a computational task. 

2.2. Molecular encoding 

2.2.1. String-based representations 
The Simplified Molecular Input Line Entry System (SMILES) was 

established by David Weninger as a means of representing individual 
molecules as strings [20]. The system, exemplified in Fig. 6, was inspired 
by molecular graph theory. SMILES provide information about a 
chemical’s atoms, bonds, branches, and cyclic structures. A canonical 
SMILES string does not provide information about isotopism and ste-
reochemistry, while isomeric SMILES strings do. Additionally, aroma-
ticity may be expressed by altering the case of an atom. Although each 
SMILES string only corresponds to one molecule, a unique molecule may 
possess several SMILES representations. Other authors have elaborated 
on Weninger’s SMILES syntax. One notable derivative of the original 
SMILES system, SELFIES, was created to mitigate the problem of random 
SMILES invalidity [21]. SELFIES strings may be more suitable for pro-
cessing by machine learning models, especially generative algorithms, 
as they are completely robust. This means that even randomly generated 
SELFIES strings will depict valid molecules. 

Binary molecular fingerprints may also represent molecules, espe-
cially when attempting to compare chemical structures objectively. The 
Molecular Access System (MACCS) key fingerprint is a 166-key long 
string of binary values [22]. MACCS keys can depict the features and 
structural characteristics of individual molecules without incurring a 
high computational burden or excessive complexity. Many of the fea-
tures characterized, like aromatic ring count, are properties of interest in 
a pharmacological context [23,24]. 

2.2.2. 2D graphs 
2D molecular graphs consist of a set of nodes V and a set of edges E, 

where V represents the set of atoms contained in a molecule, and E 
represents the set of bonds linking those atoms together [25]. An adja-
cency matrix (Fig. 7a) may indicate the position of a given atom in a 
compound. Bonds are depicted by an edge features matrix (Fig. 7b), 
while atoms are represented by a node features matrix (Fig. 7c). Atoms, 
bonds, and adjacencies are designated as one-hot encoded matrices, but 
integer encoded matrices may be used with less complex molecules as 
well. 

2.2.3. 3D graphs 
Several variations of 3D molecular graphs have been proposed for 

use in machine learning algorithms, but their fundamental elements are 
nevertheless inspired by molecular graph theory. Bond angles, bond 
lengths, and dihedral angles may be described as diagonal matrices [26]. 
Other models which incorporate feature, adjacency, and relative posi-
tion matrices incorporate existing knowledge about the quantitative 
basis for bond polarity, electronegativity, and 3D conformation to 
construct graphs suitable for graph convolutional networks [27]. 
Alternatively, the coordinates of each atom in the chemical space can be 
defined explicitly [28]. 

2.3. In silico validation 

While comparative benchmarks designed specifically for generative 
models will be discussed in detail, the principles upon which these 
systems are contrived must be reviewed. Databases curated to address 
target-ligand interactions enable the training of algorithms according to 
a defined set of attributes. Compound-focused libraries, such as ZINC 
and DrugBank, specify the clinical applicability of approved drugs and 
drug candidates [29,30]. Predicting molecule activity congruent to its 
structure may be accomplished by studying these collections of drugs, 
rather than exploring the entire chemical space, improving efficiency 

Fig. 2. A generative adversarial network. The generator assembles the random 
noise such that it, ideally, resembles the training data. The discriminator then 
categorizes each sample. 

Fig. 3. A variational autoencoder. As indicated, the encoder and decoder are 
probabilistic, not deterministic. The sampled latent vector is a compressed 
version of the input. N(0,1) represents the normal distribution. The error term is 
denoted as ε. 
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and specificity. Other databases, such as the IUPHAR Guide to Phar-
macology and ChEMBL libraries, offer greater detail on the dynamic 
relationships between targets and ligands [31,32]. They include profiles 
curated for individual targets, which is convenient in assessing potential 
interactions between drugs and the role of protein function in ligand 
binding. Furthermore, target-focused libraries like the Transporter 

Classification Database (TCDB) and the Variability of Drug Transporter 
Database (VARIDT) may inform a machine learning algorithm of the 
function of structural characteristics of proteins in drug efficacy [33,34]. 
However, as de novo compound design concerns small molecules, data 
about the target alone does not provide the chemical information 
necessary to synthesize original ligands. Therefore, it is vital to use these 
databases as complementary agents. 

Generating novel molecular structures is not a particularly difficult 
task in and of itself; the challenge lies in synthesizing compounds that 
are both structurally plausible and drug-like. If a compound is not 
chemically possible, it cannot be evaluated, regardless of how well it 
seems to perform in silico. Multi-property optimization, as defined in 
this study, refers to the capacity of a model to satisfy these various 
conditions. Similarity, which is often determined through the use of 
molecular fingerprints and pharmacophoric descriptors, is a common 
metric used to determine validity [35]. When receptor features cannot 
be encoded, comparing generated molecules to compounds with known 
bioactivity with respect to a target enables the prediction of biophysical 
mechanisms without specifying information about protein structure 

Fig. 4. An adversarial autoencoder. The top row is a basic autoencoder, while the bottom row represents the adversarial piece of the model in which the 
discriminator determines whether the generated output resembles the training data. 

Fig. 5. The basic steps executed in an evolutionary algorithm. Termination 
criteria could be defined in many ways, such as optimization or a set maximum 
number of iterations. 

Fig. 6. Acetic acid and its corresponding SMILES representation. The double 
bond is portrayed by an equal sign and the branch structure is represented by 
parentheses. 
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[36]. Broadly, the qualities of interest assessed in multi-property models 
include absorption, distribution, metabolism, excretion, and toxicity 
(ADMET). Depending on the training data and the specified bioactivity, 
several measures of therapeutic potential can be utilized. Binding af-
finity, correspondence to Lipinski’s rule of five, and solubility are among 
the most frequent measures of ADMET satisfaction [37,38]. In many of 
the established databases used to train generative models, like ChEMBL, 
entries indicate both molecular structure and ADMET descriptors. 
Therefore, whether a system adequately optimizes multiple character-
istics depends on the fulfillment of these requirements. 

Docking and molecular dynamics simulations (Fig. 8) are studied to 
evaluate interactions between ligands and their environments or 
macromolecular targets. In molecular docking, a ligand is positioned 
relative to a specified target and scored as a function of its affinity for the 
binding site. Metrics provided to compare binding affinity are provided 
in numerous docking software interfaces. Molecular docking, as a form 
of compound validation, can assist in the accurate prediction of chem-
ical behavior in an experimental setting [39,40]. Molecular dynamics 
simulations may elucidate binding mechanisms and advise the selection 
of more selective ligands [41–43]. These simulations are also conducted 
with the objective of making informed predictions about the expected 
behavior of drug candidates when acting on a target. 

3. Systematic literature review 

To ensure a standardized review procedure, the Preferred Reporting 
Items for Systematic reviews and Meta-analyses (PRISMA) 2020 state-
ment informed the methodology used in this review [44]. The statement 
includes guidelines for authors, specifically discussing the measures that 
should be taken to ensure complete transparency in conducting sys-
tematic reviews. All items stated will therefore be addressed prior to 
formal analysis. 

3.1. Eligibility criteria 

Because machine learning methods contrived to generate novel 
molecules automatically have only recently expanded, a five-year time 
period was deemed appropriate for the present review. For example, the 
de novo drug design software Design of Genuine Structures (DOGS), 
introduced in 2012, does not utilize any generative machine learning 
technique, although it would ultimately inspire subsequent experiments 
[45]. Until 2017, the explicit application of generative molecular models 
to de novo pharmacology was not stated. Notably, the publications of 
Gómez-Bombarelli et al. and Segler et al. were the first observed to 
reference each other concerning this problem [46,47]. Considering the 
relative novelty of this field, the selected time period was chosen to 
accommodate the sparsity of relevant content prior to 2017. 

Only articles found to satisfy the following criteria were included in 
the review:  

1. The study is written in English.  
2. The study was published between January 2017 and January 2022.  
3. The study is a full-text research article or review.  
4. The study concerns the use of machine learning to generate small, 

drug-like molecules de novo. 

3.2. Information sources 

The following online databases were searched for eligible articles: 
(1) PubMed, an archive of biomedical literature maintained by the U.S. 
National Institute of Health; (2) ScienceDirect, a peer-reviewed article 
database containing full-text articles across a wide range of disciplines 
published in Elsevier journals; (3) Springer, an international source of 
scientific documents from journals, books, proceedings, and protocols; 
(4) Wiley Online Library, a multidisciplinary source of journal 

Fig. 7. Acetic acid encoded with (a) an adjacency matrix, (b) a node features matrix with information about the atom types and number of implicit hydrogen atoms, 
and (c) an edge features matrix representing the bond orders. 

Fig. 8. A schematic representation of the rationale behind molecular dynamics simulations as a means of validating ligand-target interactions.  
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publications, books, and other research documents; (5) arXiv, an open- 
access database of scholarly articles; (6) MDPI, an open-access publisher 
of peer-reviewed studies; (7) bioRxiv, a distribution service for article 
preprints; and (8) IEEE Xplore, a digital library maintained by the 
Institute of Electrical and Electronics Engineers containing over five 
million scientific and technical documents. All databases provide 
domain-relevant information. 

3.3. Search strategy 

In each of the aforementioned databases, an Advanced Search filter 
was applied to limit search results to articles published since January 
2017. To ensure complete transparency of information, only full-text 
articles were screened manually. The search queries were written as 
Boolean statements as follows:  

1. “Machine learning” AND "de novo" AND "drug”;  
2. “Machine learning” AND “de novo” AND “molecul*”. 

3.4. Study selection 

After searching the specified databases using the filters described in 
section 2.3, a total of 1,402 articles were collected. To assess whether the 
inclusion criteria mentioned were met, the abstracts and titles of each 
article were reviewed manually. If the abstract and title of an article 
suggested that the document could be within the scope of the present 
systematic literature review, the text was read in its entirety. Studies 
irrelevant to the research questions were discarded from consideration. 
1,301 studies were deemed ineligible for the present systematic litera-
ture review. Fourteen of the remaining 101 studies were duplicate ar-
ticles. Therefore, the initial search of the literature yielded 87 full-length 
articles. Twelve additional publications were included in the review on 
account of their frequent citations by the other texts identified. In total, 
96 studies were found eligible for this review. The PRISMA flow chart 
corresponding to the present methodology is shown in Fig. 9. 

3.5. Data collection 

In accordance with the research questions proposed during this 
systematic review, the data items shown in Table 1 were collected for 

each article selected. Results were organized in an Excel spreadsheet. 
Titles were collected to facilitate the identification of each study. The 

publication year of each article was also included to enable comparative 
analysis of the distribution of other article characteristics over the past 
five years. For original research articles, the model(s) used were recor-
ded to evaluate trends and improvements to machine learning models 
used in generative drug discovery. Because generative models depend so 
heavily on the format of input data, the encoded representation utilized 
to format each molecule was recorded as well. For every article in which 
difficult aspects of in silico de novo drug design were disclosed, the 
specific concerns raised were recorded as challenges. Note that, like-
wise, these challenges imply proposed countermeasures to express dif-
ficulties. For review articles, the models and molecular representations 
discussed were not included in the final statistical analysis but were still 
listed in their respective columns to observe which among them were 
most frequently discussed throughout all the articles. 

3.6. Study quality assessment 

To assess the quality of each article selected, the Critical Appraisal 
Skills Programme (CASP) Qualitative Studies and Systematic Review 
Checklists were modified [48,49]. The modified CASP Qualitative 
Studies Checklist questions (Table 2) were used to evaluate experi-
mental research articles written either to introduce new models or to 
make use of existing models such that their performances might be 
analyzed. Questions in the original CASP Qualitative Studies Checklist 
referencing human and animal participants were removed, as no such 
procedure was relevant to the articles in question. Review or commen-
tary articles were critiqued with the modified CASP Systematic Review 

Fig. 9. The PRISMA flow diagram demonstrating the filtering of documents.  

Table 1 
The data recorded for each individual document in an Excel spreadsheet.  

Item Description 

Title Title of the document 
Publication Year Year of publication 
Model(s) Machine learning model(s) used or designed 
Molecular 

Representation 
Molecular encoding format 

Challenges Challenges addressed, independent of whether a solution 
was proposed  
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Checklist questions (Table 3). Because not all review or commentary 
articles were systematic reviews, many of the checklist items were 
irrelevant to the subject. 

Almost all criteria were satisfied by every article chosen. Limitations 
do exist, however, in that not all articles were published without an 
acknowledgment of competing interests or lack thereof. Some experi-
mental research articles failed to explicitly mention study impediments 
or future directions. 

4. Results and discussion 

4.1. Machine learning models 

4.1.1. RNN 
LSTM-RNN models were by far the most widespread generative ar-

chitectures used in machine-informed de novo drug design. Olivecrona 
et al. trained an RNN employing RL to fine-tune the network, signifi-
cantly improving previous efforts to generate molecular graphs with an 
RNN [50]. As one of the first attempts to produce a generative model to 
aid in drug discovery, their model is regularly compared to alternative 
RNN architectures. Soon after, Popova et al. advanced ReLeaSE, a 
stacked LSTM-RNN QSAR model, correspondingly implementing RL to 
optimize specified properties [51]. They justified their use of RL by 
citing findings that the approach could reduce bias in chemical structure 
generation, setting a precedent in conjunction with Olivecrona et al. 
Yang et al. [52] and Ertl et al. [53] demonstrated that RNNs could 
innovate molecular structures with an efficiency superior to that of 
VAEs. This characteristic is often requisite for drug discovery, especially 

if a given disease poses an immediate danger to those affected. 
Furthermore, the former team distinguished their strategy from previous 
methods by specifying the model’s ability to suggest original structures 
without relying on predefined fragments. Unlike Yang et al., Ertl et al. 
did not perform a Monte Carlo tree search. Both studies resulted in 
generated drug-like molecules of high synthetic feasibility. Segler et al. 
[47] used an LSTM-RNN model to attempt to reproduce input chemical 
structures. They were able to fine tune the model’s performance by 
training it with input molecules with known activity against an indi-
vidual target and found that this manner of fine-tuning could refine 
generated molecules such that they will exhibit the desired bioactivity. 

Gupta et al. fine-tuned an LSTM-RNN network with TL, an approach 
that permitted the generation of valid molecules even without 
enumerating a virtual compound library [54]. Like Popova et al., the 
team emphasized the importance of coupling the RNN with an external 
learning technique in order to reduce bias. Notably, their publication 
was the first example of fragment growing through an RNN. Merk et al. 
determined that an RNN could generate valid molecules independent of 
explicitly provided chemical rules [55]. Hence, the need to develop 
models encoded with domain expertise may be counterproductive and 
unnecessary. Their model displayed impressive generalizability and 
sensitivity to fine-tuning, another instance of the promise of artificial 
intelligence in target-specific ligand design. Bjerrum and Sattarov [56] 
compared the performance of LSTM-RNN models using autoencoders 
and heteroencoders. Following the technique proposed by Segler et al., 
Bruns et al. applied constructive machine learning to train an 
LSTM-RNN algorithm to construct molecules able to induce chemotaxis 
[57]. Two synthetically accessible compounds, both successful in pro-
ducing the desired phenotypic effects, were discovered, proving that 
RNNs may be trained to generate molecules with bioactive properties 
beyond those unique to protein targets. DeepCOMO, introduced by 
Yonchev and Bajorath [58], was formulated to incorporate the analog 
functionality of the compound optimization monitor (COMO) method 

Table 2 
The modified CASP Qualitative Studies Checklist items referenced to evaluate 
articles in which a generative model was utilized or evaluated.  

Checklist item Examples 

Was there a clear statement of the 
aims of the research? 

Did the authors state how they expected to 
improve other methods, or did they 
introduce a new approach? Were models 
executed to test a comparative metric or to 
examine an area in which present models 
could improve? 

Is a qualitative methodology 
appropriate? 

Were the qualities of generated models 
discussed in context? Were any practical 
implementations of the model 
demonstrated? How were generated 
molecules compared with existing drugs? 

Was the research design appropriate 
to address the aims of the 
research? 

If a new model was designed, was the 
computational basis for the algorithm 
rationalized? Were metrics clearly defined 
and justified? 

Was the data collected in a way that 
addressed the research issue? 

Which qualities were studied? Were they 
relevant to the aims of the research? Were 
appropriate databases used? 

Was the data analysis sufficiently 
rigorous? 

Did the authors exercise full transparency in 
presenting the data? Was the data 
deliberately manipulated such that readers 
might be deceived? Were the tools or 
calculations used to collect data stated? 

Is there a clear statement of 
findings? 

Were the data explained and applied to real- 
world contexts? Was the method evaluated 
relative to numerous tasks? Were the data 
represented honestly? 

Were the contributions of the study 
addressed? 

Were findings compared with those from 
previous studies? Did the authors address 
how their findings might be applied to future 
experiments or practical contexts? 

Are the limitations of the study 
stated? 

Did the paper expand upon areas in which 
the findings could be biased or limited? Were 
prospects for future methodological 
enhancements considered? 

Has the researcher stated any 
conflicts of interest or lack 
thereof? 

Was a transparent statement of conflict of 
interests, either present or absent, included 
in the article?  

Table 3 
The modified CASP Systematic Review Checklist items referenced to evaluate 
articles in which a review was conducted.  

Checklist item Examples 

Was there a clear statement of the 
aims of the review? 

Did the authors state how they expected to 
influence the practice of machine learning 
in drug discovery? Was the motivation for 
the paper explained? 

Did the authors look for the right type 
of papers? 

Were articles reviewed on-topic? Were 
published research articles sought? 

Were relevant studies included? Did each citation coherently relate to the 
aims of the review? Were findings taken 
out of context? 

Were studies analyzed reliably 
sourced? 

Did the reviewer verify the credibility of 
the source material? Did all studies provide 
sufficient evidence, even to support 
subjective claims? 

If the results of the review have been 
combined, was it reasonable to do 
so? 

If papers were categorized, was 
classification justified? Were criteria for 
including or excluding articles specified? 

Is there a clear statement of findings? Was the content of analyzed articles 
summarized honestly? Were all aims of the 
study addressed? Was statistical analysis 
performed to quantify the results? 

Were the contributions of the study 
addressed? 

Were findings compared with those from 
previous studies? Did the authors address 
how their findings might be applied to 
future experiments or practical contexts? 

Were references cited when 
appropriate? 

If subjective claims were made, was 
sufficient evidence provided to justify 
them? Was evidence reliable? Did the 
review provide a balanced perspective on 
the issue? 

Has the researcher stated any conflicts 
of interest or lack thereof? 

Was a transparent statement of conflict of 
interests, either present or absent, included 
in the article?  
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and TL with the generative capability of an LSTM-RNN model. Whereas 
Gupta et al. adopted TL in conjunction with an LSTM to generate a 
diverse library of molecules, Yonchev and Bajorath’s use of analog series 
enabled the simultaneous optimization and generation of novel 
drug-like substances. 

Various authors utilized LSTM-RNN networks to generate novel ki-
nase inhibitors [59–63]. Another practical use of an LSTM-RNN model 
was implemented by Santana and Silva-Jr [64], as well as by Amilpur 
and Bhukya [65] in a separate study, to predict inhibitors of SARS-CoV-2 
protease inhibitors. These studies imply that the application of genera-
tive machine learning to individual macromolecular targets could be 
feasible ex silico. Santana and Silva-Jr analyzed 20 hit compounds 
through molecular docking, observing nine with binding positions 
similar to those assumed by experimental molecules. While the results 
obtained by Amilpur and Bhukya were similarly auspicious, the use of 
three complementary models—one to assemble general chemical 
structures, one to fine-tune chemical properties, and a final classification 
algorithm—by Santana and Silva-Jr may enhance prediction accuracy. 
REINVENT, an LSTM-RNN model, was evaluated by Thomas et al. [66] 
and was later fine-tuned by Blaschke and Bajorath [67]. It was 
concluded that alterations in the set of molecules used to train an RNN 
could lead to the generation of molecules exhibiting preferred charac-
teristics similar to those of familiar molecules, as demonstrated in pre-
vious investigations of fine-tuned datasets. Moret et al. [68], using an 
LSTM-RNN algorithm, ascertained that external compound scoring 
functions were not imperative when model-intrinsic sampling was 
incorporated. Van Deursen et al. [69] administered a series of hidden, 
bidirectional RNN units to form Generative Examination Networks 
(GEN) as a novel training method for RNNs. Their observations suggest 
that, in relation to the GRU layers, LSTM layers yielded a greater pro-
portion of valid SMILES strings. Likewise, bidirectional GRU layers 
performed poorly in comparison to both uni- and bidirectional LSTM 
layers. An LSTM-RNN was used in conjunction with a beam search al-
gorithm by Bai et al. [70]. The algorithm conserved structural compo-
nents necessary for the preservation of bioactivity while simultaneously 
maintaining compound diversity. Beam search sampling was also 
considered a favorable alternative to external compound prioritization. 

The RNN-GRU architecture, while certainly less universal than 
LSTM-RNN, was explored as well. Zheng et al. [71] designed an 
RNN-GRU network informed by molecular stereochemistry and bioac-
tivity. In the study, the productive consequences of TL integration were 
affirmed. Derivatives of recognized bioactive substances were more 
prominent in the generated library after TL was applied. The same 
network structure was proposed by Popova et al. [72] in their Molec-
ularRNN, intended to compose molecules with specific properties. Un-
like previous models, MolecularRNN employs a valency-based rejection 
sampling process, a feature that guarantees 100% structural validity. 
Blaschke et al. [73] harnessed memory-assisted RL to train an RNN-GRU 
model. Compared to standard RL algorithms, memory-assisted RL 
mitigated the problem of insufficient diversity in recommended mole-
cules. Another case study completed by Liu et al. [74], in which DrugEx 
was employed, implicated the use of an RNN-GRU with RL and a special 
exploration strategy to discover ligands against the adenosine A2A re-
ceptor. This exploration method involves the coupling of two RNN 
models: one, deemed the “exploitation network,” and the alternative 
“exploration network.” This technique improved similarity between the 
artificially generated data without rewarding the production of mole-
cules identical to those in the training set. After van Deursen et al. 
published a comparative analysis of GRU and LSTM layers in which the 
performative superiority of the LSTM architecture was substantiated, 
the use of GRU models declined. In spite of this, the findings of Popova 
et al. and Liu et al. should continue to direct the framework of 
LSTM-RNN models. 

4.1.2. AE 
VAEs were the second most prevalent class of models used to 

generate drug-like molecules de novo. Like RNNs, they were one of the 
first types of generative models to be implemented. Gómez-Bombarelli 
et al. [46] introduced the technique in 2016, inspiring other researchers 
to elaborate upon their conclusions. Because the database included in 
the study was limited to molecules containing no more than nine heavy 
atoms, their results did not represent drug design as a broader discipline. 
The conditional VAE introduced by Lim et al. [75] illustrates one such 
example. Their CVAE is distinct from the traditional VAE in that it is able 
to alter the encoding and decoding processes such that certain condi-
tions will be met by embedding conditional information in the objective 
function of the VAE. Assouel et al. [76] manufactured DEFactor with the 
same intention–to facilitate conditional graph generation. Nevertheless, 
the model described did not resolve the issue of inferior graph size, as 
observed in the original work by Gómez-Bombarelli et al. GraphVAE was 
created by Simonovsky and Komodakis [77] to increase the efficiency of 
small molecular graph generation. Graph size continued to present a 
limitation. However, the probabilistic graph decoder successfully cir-
cumvented the problem of non-differentiability identified in the initial 
paper. Samanta et al. [78] proposed NeVAE, a VAE capable of gener-
ating molecular graphs adapted to specified characteristics. Compared 
to Bayesian optimization and established RL techniques, the output of 
NeVAE comprises substances with property values improved by over 
121%. Li et al. [79] organized DeepScaffold in consonance with the VAE 
architecture. Confirming the earlier conclusions of Merk et al., Deep-
Scaffold implicitly developed an awareness of chemical laws. Addi-
tionally, the model is able to generalize according to multiple drug 
design exercises, including docking-specific measures of drug-likeness. 

One notable VAE, generative tensorial reinforcement learning 
(GENTRL), was developed by Zhavoronkov et al. [80]. By compiling the 
techniques of RL, variational inference, and tensor decompositions, the 
VAE developed molecules with high synthesizability, bioactivity, and 
diversity values. While the compounds were not experimentally vali-
dated, quantum computational analyses confirmed the viability of the 
proposed conformations. Born et al. [81] described PaccMannRL, in 
which two VAEs are utilized, enabling the consideration of both mo-
lecular information and transcriptomic data. Even before encoding 
experimental data concerning anticarcinogens, the model exhibited a 
bias towards highly bioactive chemical agents. These findings support 
the use of transcriptomic data in de novo drug discovery with machine 
learning, which could be beneficial in developing cancer treatments 
specific to an individual’s genetic profile. Arcidiacono and Koes [82] 
employed a VAE to encode 3D molecular graphs, introducing the pos-
sibility of VAE-informed 3D coordinate prediction. While Drotár et al. 
[83] also encoded molecules as 3D graphs, they chose a constrained 
graph VAE, departing from the traditional architectural standard. Their 
3D graphs included fewer indications of compound radii, but the addi-
tion of data on ligand-protein complexes observed experimentally pro-
duced more viable drug-like molecules. 

Schultz et al. [84] developed DarkChem, a VAE-based software, and 
generated novel antagonists of the NMDA receptor as proof of concept. 
Specifically, DarkChem is tailored to predict metabolomic properties, 
doing so more efficiently than first-principles simulations. Data obtained 
in silico and experimentally were amalgamated to train and refine the 
model, improving its predictive accuracy. VAE models in particular 
benefit from experimental results, as demonstrated earlier by Drotár 
et al. Chenthamarakshan et al. [85] launched CogMol, another VAE with 
the capacity to process target-specific information. After the AE was 
trained to design molecules with a high binding affinity for the 
SARS-CoV-2 protease, presented ligands were assessed through molec-
ular docking simulations. These procedures revealed that most sub-
stances generated expressed high target selectivity, in part due to the 
model’s capacity to consider multiple constraints. Target-specific fine--
tuning is not required, making the model suitable for circumstances in 
which data availability is limited. Most recently, Li and Ghosh [86] 
fabricated SQ-VAE, a scalable quantum generative autoencoder, 
showing that the use of quantum computing can be advantageous in 
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small molecule design, although the model is less efficient. This draw-
back is discerned in most applications of quantum computing. If greater 
computational power and a broader time window are both available, 
SQ-VAE could be considered for practical use. 

AAEs were also implemented in several experiments. Kadurin et al. 
[87] developed druGAN, the first AAE invented to generate molecular 
graphs. In this study, the researchers revisited an earlier AAE model that 
suffered from reconstruction error and poor discriminative power. The 
addition of a hyperparameter to measure sources of error in both the 
discriminator and the generator resolved these issues. Nevertheless, the 
absence of RL was acknowledged as an enduring source of inaccuracy. 
The authors proposed that integrating a multi-GAN pipeline could 
improve this deficiency. Polykovskiy et al. [61] observed that an 
entangled conditional AAE (ECAAE) could originate drug-like molecules 
of a higher quality than those generated by other AEs. The novel ECAAE, 
joint entanglement, predictive entanglement, combined entanglement, 
and disentanglement were juxtaposed, with the ECAAE model gener-
ating the greatest proportion of unique molecules. While the combined 
entanglement approach outperformed all alternative models in gener-
ating high logP values for continuous features, the novel ECAAE had the 
highest predictive accuracy for binding energy. Bai and Yin [60] noted 
that the pharmacological space of kinase inhibitors could be augmented 
by applying an AAE, deemed an Ensemble of PCM-AAE (EPA). Because 
the EPA algorithm exploits the chemical space in its entirety, it can be 
operated with fewer data points. Additionally, the model does not 
require data obtained from docking simulations, reducing the overall 
computational expense associated with training and executing the 
model. Liu and Bailey [88] introduced an innovative method of stacking 
models, enhancing the Bidirectional AAE architecture presented in 
earlier studies. One of the AEs is adapted to generate molecules ac-
cording to basic features of drug-like compounds and gene expression 
information, while the other learns chemical properties and optimizes 
suggested molecules. Compared to the single, unidirectional AAE 
implemented by Kadurin et al., the bidirectional AAE identified a greater 
proportion of valid structures. Blaschke et al. elaborate on the various 
applications of AEs in de novo molecular design, contrasting their per-
formances to evaluate their competency in predicting bioactivity [89]. 
An AAE trained to follow a Uniform distribution generated the greatest 
proportion of valid SMILES. Furthermore, an AAE trained with a 
Gaussian distribution performed almost as well as the Uniform AAE. 
Both AAE models promoted a larger proportion of valid molecules with 
chemical similarity to the training set. Although AAEs are currently less 
prevalent in the literature than VAEs, the conclusions of Blaschke et al. 
insinuate that they should not be neglected in model selection. 

4.1.3. GAN 
Of the three model architectures present in publications since 2017, 

GAN was the least common. Sanchez-Lengeling et al. invented 
ORGANIC, an extension of the established ORGAN architecture [90]. As 
the first GAN designed to generate molecular structures, ORGANIC was 
often utilized as a point of comparison in later studies. Non-valid mol-
ecules were frequently generated. This drawback was attributed to the 
roughness of the chemical space explored, mode collapse, and insuffi-
cient hyperparameter variation. The adversarial threshold neural com-
puter (ATNC) presented by Putin et al. [91] was a drastic improvement 
to ORGANIC, generating 72%, as opposed to only 7%, valid SMILES 
strings. Internal Diversity Clustering (IDC), an original objective reward 
function, encouraged the generation of a diverse molecular library. The 
model’s reduced susceptibility to mode collapse may be attributed to the 
IDC method. The same group would later release a reinforced adversa-
rial neural computer (RANC) based on a GAN model and RL [92]. The 
RANC system incorporates a differentiable neural computer (DNC) 
neural network; because, like LSTM networks, DNCs benefit from an 
explicit memory bank, this technique can prevent mode collapse. 

Prykhodko et al. [93] constructed LatentGAN, finding that the model 
could generate compounds different from those produced by an RNN. 

This suggests that the two models could be run in conjunction with one 
another to obtain a more diverse set of drug candidates. MolGAN, a 
prominent generative model for drug-like molecules and other organic 
substances alike, was created by De Cao and Kipf [94]. Almost 100% of 
generated compounds proved valid. Additionally, because MolGAN is 
both implicit and likelihood-free, the computational expense associated 
with likelihood-based models is avoided. Yet, because the structures 
with which the model was trained were limited to a maximum heavy 
atom count of nine, the generator is unlikely to suggest more complex 
drug molecules. Méndez-Lucio et al. [95] stacked conditional GANs and 
the Wasserstein GAN with gradient penalty to improve the quality of 
generated molecules. Both gene expression data and structural repre-
sentations of small molecules were utilized to influence the generator. 
Compared to structures identified by traditional similarity search pro-
cedures, including Euclidean and cosine distance, original molecules 
more closely resembled known active compounds. The l-Wasserstein 
distance metric was calculated again by Pölsterl and Wachinger [96]. 
The model, termed ALMGIG, incorporated a likelihood-free network, 
building upon the strengths of MolGAN. However, the inference 
network incorporated into ALMGIG significantly reduced the rate of 
mode collapse. Multiple modes of the distribution were identified by the 
reformed model. Mol-CycleGAN, produced by Maziarka et al. [97] and 
inspired by MolGAN, was exploited to compose molecules with defined 
structural or physicochemical properties. Similarity and logP values 
were assessed as a constrained optimization task. According to a com-
parison between Mol-CycleGAN, a junction tree VAE, and a graph 
convolution policy network, the novel GAN model demonstrated the 
greatest rate of improvement, indicating that it is an ideal framework for 
molecular optimization problems. Recently, Jacobs and Maragoudakis 
have developed ASYNT-GAN, a model intended to effect molecules in 
accordance with their binding affinity to specific proteins [98]. The 
model was shown to generalize beyond the target data collected to train 
the model. While the suggested method of encoding 3D coordinates 
representative of the ligand complexed with a protein target, the model 
fails to generate point clouds without any noise. A final adaptation of 
MolGAN, a quantum GAN with a hybrid generator (QGAN-HG), was 
described by Li et al. [99]. It was found that, by reducing the depth of the 
neural network, issues like instability and vanishing gradients could be 
avoided. To compensate for the fact that more time is needed to execute 
quantum neural networks, the parameters used in the original MolGAN 
framework were reduced. This reduced form of the model showed 
favorable performance only when implemented as a QGAN. 

4.1.4. Evolutionary algorithms 
Yoshikawa et al. [100] implemented ChemGE, a grammatical evo-

lution model. Hundreds of the generated molecules were validated in 
docking studies. Furthermore, the capacity to run several evolution 
simulations simultaneously represents an additional advantage of 
ChemGE. Another significant evolutionary model, EvoMol, was devised 
by Leguy et al. [101]. Various advances were made in the EvoMol 
study—notably, the capacity to construct molecular graphs independent 
of initial data. Although the model also composed many non-drug-like 
molecules in separate experiments, goal-directed synthesis was uti-
lized to compose molecules with specified bioactivities. Nigam et al. 
[102] created JANUS, a parallel tempered genetic algorithm deep neural 
network. Parallel propagation enables the maintenance of two pop-
ulations during each generation interval; while one probes the phar-
macological space, the other selects for desired features. These 
populations are not isolated, meaning that member exchange between 
each selection of molecules is feasible. Compared to various VAEs, 
ChemTS, ORGAN, and MolecularRNN, JANUS obtained the greatest 
average best penalized logP values. Park et al. [103] formed FasterGTS, 
a genetic algorithm with an MCTS. The similarity of generated mole-
cules to reference drugs was optimal for both FasterGTS and ChemTS. 
The authors state that JANUS appears to have been overfitted, which 
may imply that the conclusions drawn in the original study were not 
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explored thoroughly. PASITHEA [104], a model drafted based on 
inceptionism techniques and evolutionary models for de novo molecular 
design, differs from previous genetic algorithms in that it directly, rather 
than indirectly, explores the chemical space. As a consequence, it is 
possible to probe the model’s interpretation of the chemical space 
explicitly. This property, reversibility, is not observed in VAE models, 
which suffer from deficient transparency. 

4.1.5. Other models 
Models were placed under the “Other” category if they were only 

raised in two or fewer publications. First, a Transformer neural network 
for de novo drug design based on amino acid sequence data was 
described by Grechishnikova [105]. Information about a target protein 
guided the generation of new molecular structures using a self-attention 
mechanism. Another Transformer algorithm established by Hu et al. 
applied a Transformer algorithm to the SARS-CoV-2 main protease 
[106]. Because standard self-attention considers all tokens in a 
sequence, it is not preferable in tasks involving the prediction of only the 
next token. The pipeline utilized generated molecules with attributes 
similar to those detected in experimental studies of approved drugs. Gao 
et al. developed a generative network complex (GNC), a model incor-
porating both an AE and an LSTM network [107]. Unlike the AAE ar-
chitecture, no GAN pipeline is included in the GNC. Instead, the model is 
characterized by features of both a VAE and an RNN model. Similarity 
scores were evaluated with molecular fingerprints and pharmacophore 
analysis; produced molecules performed well on both metrics. Both 
similarity and density of the training data with respect to desired 
property values were emphasized as necessary components of the 
training and testing datasets. The final uncategorized model was L-net, 
developed by Li et al. [108] to generate molecules in three dimensions. 
In the initial study, L-net was applied with MCTS to discover inhibitors 
of ABL1 kinase. In the second [109], the same basic algorithm was run, 
with a few methodological adjustments. Instead of ABL1 kinase, the 
SARS-Cov-2 protease was targeted. The authors also introduced Deep-
LigBuilder, a model capable of directly generating 3D ligand structures. 

Changes in the frequencies of the described model architectures are 
shown in Fig. 10. GANs, VAEs, AAEs, and LSTM networks were among 
the earliest attempted architectures proposed for the generation of drug- 
like molecules de novo. LSTM-RNN models were the most common 
models in 2017, 2020, and 2021. VAEs were utilized often in 2018. The 
majority of experimental papers published in 2019 included GANs. 
RNN-GRUs did not appear in any experimental articles released in 2021, 
and GANs presented less frequently as well. As established, GANs are 
generally more susceptible to mode collapse than other generative 
models, which may have influenced their reduced presence in the 
literature from 2021. The use of AAEs and evolutionary algorithms was 
inconsistent; the first AAEs were introduced in 2017 and 2018 but were 
not present in any studies from 2019 to 2020. They then emerged in 
multiple publications from 2021. Evolutionary algorithms came into use 
around 2018 but were not related in 2019. Granted, fewer experimental 
articles were observed overall in 2019, so these gaps might simply 
indicate a broader chronological trend. Because the Transformer and L- 
Net algorithms are relatively recent, no definitive conclusions can be 
made about their future using the limited data presently available. The 
LSTM-RNN approach is likely to remain conventional, while the rele-
vance of RNN-GRUs and GANs may decline as other models emerge. 

4.2. Molecular representations 

4.2.1. String-based representations 
Of all molecular encoding options, canonical SMILES strings were 

the most frequent. Using SMILES frames the problem of de novo mole-
cule generation as a natural language processing task. As such, the 
strings were usually either one-hot encoded or integer encoded, such 
that each atom or bond in a string could be formatted as a matrix. Most 
studies did not specify whether data was augmented, but eight of the 94 

publications explicitly discussed methods to augment SMILES data. 
Training the encoder with enumerated SMILES, then decoding as ca-
nonical SMILES, results in the tightest clustering. Training the encoder 
or the decoder with enumerated SMILES yielded the best performance in 
QSAR modeling [56]. Additionally, generative models trained with 
enumerated SMILES produced a more diverse, unique, and valid 
collection of structures in less time than those that only included can-
onicalized SMILES [53,58,62,69,93,106,110,111]. 

SELFIES were also utilized to encode molecules, albeit less often than 
SMILES, possibly because SELFIES are comparatively new. SELFIES are 
advantageous in that they may serve as surjective representations of 
molecules. As a consequence, training a generative model with mole-
cules encoded in the format eliminated the probability of generating 
invalid molecules [104]. SELFIES commonly delineated molecular 
structures in genetic algorithms [102,103], as the progressive modifi-
cation of generated structures is more efficient with the use of a mo-
lecular representation that is entirely robust. 

Of the models included in this review, only one, druGAN [87], was 
created to encode and generate molecular fingerprints. While other 
publications used molecular fingerprints to compare training data and 
the output, druGAN incorporated MACCS key fingerprints directly into 
the model. The authors conceded that “MACCS molecular fingerprints … 
are not [an] ideal representation of molecular structure.” 

4.2.2. 2D graphs 
Molecules were represented with 2D graphs. To generate new 

SMILES strings, generative models must learn the rules of SMILES 

Fig. 10. The relative frequencies of the various machine learning model ar-
chitectures observed in the review and their chronological progression. 
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syntax, some of which have no relevance to molecular structure [94, 
112]. The linearity of SMILES strings can also complicate the depiction 
of molecular properties, making goal-driven synthesis less straightfor-
ward [97]. Therefore, designating graphs to represent chemical struc-
tures in generative models could both reduce computational cost and 
equip algorithms to better process structural information. Relative to 
SMILES strings, 2D graphs are more suitable for RNNs [113]. Addi-
tionally, the use of 2D molecular graphs enables the sequential modifi-
cation and validation of molecules [97,101]. 2D graphs can be encoded 
through a series of graph convolutions [76,97]. 

4.2.3. 3D graphs 
Neither SMILES representations nor 2D graphs provide explicit de-

tails about a molecule’s 3D conformation. Molecules may not be suffi-
ciently characterized if only rendered as a function of their surface-level 
characteristics [114]. In scenarios where training data is limited, the 
machine learning algorithm will have few opportunities to learn implicit 
rules of molecular structure, such as bond order. By defining molecular 
coordinates and other physical rules of compound structure, the com-
plications associated with low data can be mitigated [108]. 3D infor-
mation might be encoded as a node-features and edge-weights matrix to 
specify the coordinates of atoms in 3D space [78,83]. Graph convolu-
tional layers can integrate state encoding [108,109]. 

As shown in Fig. 11, the overwhelming majority of models are 
trained using non-randomized SMILES strings. Although new depictions, 
like SELFIES and 3D graphs, have become increasingly popular in recent 

years, SMILES are unlikely to disappear from the literature any time 
soon. They were the most common format across all the studied years, 
with the exception of 2019, during which more publications were found 
to have utilized 2D graphs. None of the experimental studies in 2021 
explicitly mentioned SMILES randomization. Nevertheless, they may 
have been incorporated without any direct notice in the text. The appeal 
of canonical SMILES strings may be attributed to their prominent role in 
the history of cheminformatics. Recent approaches have yet to shape the 
field to such an extent, although they may be more effective in depicting 
molecules. 3D graphs seem to have attracted more interest in 2021, so 
their influence may continue beyond 2021. To optimize outcomes, the 
potential benefits of novel molecular encoding methods should not be 
neglected. 

4.3. Challenges 

After reviewing the literature on the use of machine learning in de 
novo drug design, eight major challenges faced by developers were 
identified. 

4.3.1. Diversity 
In evaluating the viability of a model as a practical tool, molecular 

diversity was a common metric. To discover a drug candidate that 
demonstrates all selected properties, it is crucial to explore a wide range 
of options. Human chemists are aware of chemical diversity, but ma-
chine learning algorithms must be informed explicitly of diversity as a 
desired metric. Limited diversity may imply the issue of mode collapse, 
especially in GANs [87,90,94,115–118]. In other words, the model fails 
to generate a range of outputs, instead generating only one final mole-
cule. Sometimes, a lack of diversity may indicate excessive similarity to 
the training data [119]. 

Solutions proposed to prevent uniformity in molecular structure 
involve either the alteration of the input data or the adjustment of the 
model architecture. An implicit, limited vocabulary of SMILES strings 
could prevent mode collapse [54]. Moreover, randomized SMILES 
strings have repeatedly proven beneficial in the generation of diverse 
outputs [53,56,62,64,110,111]. When a greater number of distinct 
SMILES tokens are provided as training data, the distribution from 
which a model may sample is wider, providing more opportunities for 
unique molecule generation [81]. For scaffold-based generative models, 
smaller scaffolds can introduce new pathways for structural diversifi-
cation [79]. VAEs and GANs, which tend to suffer mode collapse more 
frequently than RNNs [71,115] may benefit from the representation of 
molecules not as SMILES strings but as molecular graphs [52,72,78,97], 
although this remedy is not foolproof [94]. 

Modifications can be made to the learning process itself to prevent 
mode collapse. Reinforcement and transfer learning have been 
tremendously successful techniques in guiding the generation of distinct 
molecules learning [65,66,71,75,78,119,120]. Although they are less 
powerful alone, AAE and GAN models can produce a wider variety of 
molecules when incorporated into ensemble models, as shown by Bai 
et al. [60]. Slight improvement in AAE output has also been observed 
when bidirectional functionality is enabled [88]. Because they integrate 
an explicit memory bank, DNCs are able to enhance the GAN operation 
[73,92]. In addition, GANs may benefit from an internal diversity 
clustering reward [91]. Nevertheless, because VAE and GAN models so 
frequently fail to generate a collection of diverse molecules, they should 
be used with caution. RNNs are less likely to produce uniform libraries of 
molecules. Even so, their performance can be further enhanced with 
special exploration strategies [74] or analog series design [58]. 

4.3.2. Limited data 
Machine learning is dependent on adequate data. In this regard, new 

drug targets are particularly troublesome, as little, if any, training data is 
available upon their discovery [54,121,122]. Even if a large volume of 
assays were conducted on a single target, analyzing those assays requires 

Fig. 11. The relative frequencies of the various molecular encoding methods 
observed in the review and their chronological progression. 
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considerable resources, some of which may be inaccessible [17,123, 
124]. Furthermore, data quantity is not the only determinant of a 
model’s success; an algorithm is only as good as the data with which it is 
trained. Although 3D molecular graphs can be generated in silico, 
deriving 3D molecular graphs directly from crystallographic data and 
encoding them as such might produce more accurate synthetic struc-
tures [108]. When optimizing a specific characteristic, training the 
model on a dataset with molecules exhibiting a wide range of property 
values is necessary [107]. Using one model in isolation is ineffective 
under these circumstances. 

Aware of the limits of assay data, many have refined models able to 
use details about the amino acid or nucleotide sequence of a target to 
propose relevant hit-like molecules [15,66,95,105]. Models capable of 
transfer learning or active learning are robust, despite the scarcity of 
data, as they reduce the amount of manual annotation required of 
human users and automatically identify meaningful knowledge gaps 
[16,58,120]. SMILES enumeration, beyond improving output diversity, 
can serve as a form of data augmentation [56,62,69,106]. There is evi-
dence that unsupervised pre-training enhances model performance on 
small datasets [87]. Some models, like EvoMol, were contrived to 
function independent of starting data [101]. GENTRL was also shown to 
operate with incomplete information [80]. Even if none of these solu-
tions are appropriate for a particular model, the use of generative ma-
chine learning in conjunction with other algorithms and domain 
knowledge would still expedite the drug discovery process and enable 
experts to explore the chemical space in silico [59,93]. 

4.3.3. Interpretability 
Designing a model that is both interpretable and effective has proven 

challenging [61,100,125,126]. This problem relates to “black box” 
machine learning algorithms, which are only understood in terms of 
their inputs and outputs. VAE and GAN models often suffer from this 
weakness, as they rely on non-linear operations [123], though other 
models may similarly exhibit this characteristic [105]. In the interest of 
interpretable machine learning, integrated gradients, graph convolu-
tions, sensitivity analysis, and variable importance have been proposed 
[70,124]. Evolutionary algorithms allow users to visualize the explora-
tion of chemical space [101] rather than reducing the contribution of the 
model to its immediate product. The process of molecular graph gen-
eration provides valuable insight into attempted structural components. 
Another technique entails the inversion of the internal molecular rep-
resentation, as described by Shen et al., the developers of PASITHEA 
[104]. They found that the model learned to associate nitrogen atoms 
with lower logP values, using this knowledge to optimize generated 
molecules accordingly. Similar techniques might be opportune in 
determining the structural basis for chemical properties. 

4.3.4. Synthesizability 
Another issue that complicates the practical integration of machine 

learning in the laboratory is the tendency of algorithms to generate 
molecules that are difficult to synthesize [127,128]. In particular, VAEs 
regularly fail to generate synthesizable molecules [74,84,115]. 
Goal-directed generation tasks are especially troublesome, producing a 
greater proportion of insynthesizable molecules even when biased by 
training set synthesizability [129]. However, multiple algorithms 
reviewed in this study were organized with this ubiquitous problem in 
mind [68], designating synthesizability as a metric to evaluate model 
quality. Machine learning algorithms informed of retrosynthesis path-
ways were more competent in assigning weights to structural compo-
nents [80,85,122,130–132]. Ghiandoni et al. introduced a multi-label 
reaction class recommendation algorithm to restrict molecule genera-
tion to synthesizable compounds [133]. Including metrics of synthetic 
accessibility either within the reward function or externally could also 
reduce the proportion of synthetically unfeasible molecules generated 
[51,52,55,68]. Another benefit of SMILES randomization could manifest 
in higher synthesizability scores [110]. 

4.3.5. Comparability 
Many studies raised the question of model generalizability and 

comparability, arguing that both benchmark datasets and universal 
measures of model refinement should be established [126]. Percent 
validity of generated molecules, uniqueness, and diversity were com-
mon metrics used to assess model performance, but these standards 
alone may be an insufficient means of comparing models [96,117]. 
Different encodings further complicate the issue, as some models adapt 
to string-based representations well, while others work better for mo-
lecular graphs [60,113]. Databases frequently demonstrate distributions 
that are non-identical and dependent [134]. While the ChEMBL and 
ZINC databases contain a wide range of drug-like molecules, their 
versatility prevents them from acting as standardized inputs. 

Since their publication, benchmark datasets MOSES [135] and 
GuacaMol [136] have become widespread, especially with respect to de 
novo drug design tasks [111,137]. In 2018, Preuer et al. proposed 
Fréchet ChemNet distance (FCD) as a metric for the quality of models 
produced by machine learning algorithms [138]. FCD is more robust 
than ambiguous measures of model performance such as validity, 
uniqueness, novelty, and KL divergence [134]. Regardless, because drug 
design is a complex process that must be executed well in three di-
mensions, novel compounds should also be validated with 
docking-based benchmarks [139]. As these metrics and benchmarks 
come into general use, the obstacles associated with comparing the 
performance of generative models will be mitigated. 

4.3.6. Multi-objective capability 
Here, multi-objective capability definitively refers to the interaction 

between generated molecules and ADMET properties. Avoiding the 
synthesis of toxic or otherwise undesirable compounds depends on the 
capacity to optimize a molecule in several contexts [15,16,81,140–142]. 
Moreover, certain tasks in drug design benefit from molecules that are 
bioactive relative to multiple targets. Models unable to account for the 
numerous factors imperative to the discovery of compounds with 
desired activities are less feasible. Even if the originated molecules are 
assessed for their properties via external models, this technique can 
come at a high computational cost. 

As such, model-intrinsic selection of desirable attributes could 
empower the selection of structures with multiple selected activities 
without requiring extrinsic validation [68,85]. Similarly, conditional 
models are more efficient in generating compounds with appropriate 
features [75,112]. Both solutions involve the sequential selection of 
specific structural elements, as do evolutionary algorithms [103]. 
Evolutionary operators can monitor compound fitness at various stages 
in the generative process, so compounds found to be inactive or toxic can 
be removed from the population before they are suggested. When 
enough data is available to do so, fine-tuning models to favor 
multi-target compounds may result in a greater volume of multi-target 
drug candidates. Ensuring accurate multi-objective predictions also 
depends on the consistency of such values across several models, which 
can be enhanced by ensemble AE-LSTM architectures [107]. Other 
proposed countermeasures include nondominated sorting [143] and 
improved uncertainty quantification [134]. 

4.3.7. Molecule size 
While smaller molecules tend to demonstrate reduced synthetic 

complexity, certain drug targets require larger molecules. This restricts 
the use of many generative algorithms, as several are capable only of 
generating very small molecules [77,82,83]. QM9, an earlier dataset 
used to train some de novo drug design algorithms, contains molecules 
with up to 9 heavy atoms, limiting the diversity and efficacy of gener-
ated compounds as drug-like substances [74,94]. Even with access to 
datasets like MOSES and GuacaMol, which contain larger, more 
drug-like molecules, the computational expense of encoding and 
decoding molecular structures represented in 3D or as quantum systems 
can be too great when handling large molecules [86]. 
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It is important to note that the complex nature of drug design does 
not entail that cheminformatics algorithms must be complex by defini-
tion. In some cases, simpler models can operate both more efficiently 
and more effectively [62]. Adjustments to the organization of memory in 
an algorithm have proven effective as well; for example, by using a 
stacked memory or a DNC, longer compounds may be included more 
frequently, thus diversifying the effected library [51,92]. Logically, 
including a wider variety of input SMILES characters in the training set 
gives the model more freedom in exploiting the chemical space [81]. 

4.3.8. Uncertainty 
The problem of uncertainty estimation and active learning imple-

mentation was rarely mentioned, but the importance of accounting for 
uncertainty is necessary for designing compounds with conviction. As 
previously stated, accuracy alone cannot justify the use of machine 
learning to inform human decision-making. If machine learning is to 
become a reliable guide of drug discovery, it will be essential to incor-
porate more precise means of estimating uncertainty [124,134]. Because 
uncertainty has received less attention than the other challenges dis-
closed in this review, fewer solutions have been raised. For generative 
tasks, Venn-ABERS predictors and Bayesian techniques of uncertainty 
estimation are considered some of the most appropriate [123,134]. 

In Fig. 12, the frequency of these issues in the literature for each year 
is presented. In 2021, the number of publications that indicated the 
problem of limited diversity decreased, suggesting that the models 
developed in earlier initiatives were successful in managing the issue. 

On the contrary, synthesizability was addressed proportionately over 
the past five years. It has remained a consistent issue. In 2021, synthe-
sizability and multi-property optimization were the most frequently 
referenced obstacles to de novo drug design employing machine 
learning. Diversity, synthesizability, data quantity, and interpretability 
were relatively common subjects in the 2020 literature, occurring at 
similar frequencies. In the three years prior, diversity and synthesiz-
ability were the most prevalent subjects of interest. While those chal-
lenges appearing in the literature since 2017 were some of the first, 
interpretability, molecule size, and uncertainty emerged more recently. 
Discussion of the size of generated molecules was inconsistent, begin-
ning in 2018 only to emerge again in 2021. Each topic continued to 
recur in 2021, so it is possible that studies published in 2022 will 
demonstrate similar trends. 

Addressing these difficulties is evidently dependent not only on 
broad methodological reforms but also on model selection. To summa-
rize, GAN frameworks are prone to limited diversity, considering their 
vulnerability to mode collapse. Mitigating these challenges may involve 
the use of IDC, an inference network, or of a DNC network. Furthermore, 
GANs can be more efficient than other generative models, as it is feasible 
to construct them without likelihood-based functions. Similarly, RNN 
networks have proven successful in general, exhibiting efficiency supe-
rior to that of VAEs. They have been applied to mitigate deficient syn-
thetic feasibility, diversity, and multi-property optimization. RL and TL 
are crucial factors in augmenting diversity and synthetic feasibility. 
Comparative studies of GRU- and LSTM-RNNs suggest that LSTM net-
works are generally preferable concerning metrics of uniqueness, val-
idity, and similarity. AEs, including VAEs and AAEs, represent a 
considerable proportion of generative algorithms involved in de novo 
drug design. RNNs and VAEs can both infer chemical laws without the 
explicit definition of these guidelines or of target-specific data. An 
obstacle frequently encountered in VAE models is the restricted size of 
generated compounds. Therefore, VAEs should be employed principally 
when simple compounds are desired. They are useful in instances of 
limited data, as several have functioned without target-precise data or 
with incomplete information about structures and properties. As for 
AAEs, entanglement can also improve model operation in circumstances 
of low data. Uniform, as opposed to Gaussian, distribution is ideal for 
AAE training. AAE networks are not the only available ensemble pro-
cesses; the recent introduction of the GNC architecture provides mean-
ingful insight regarding the value of integrating multiple models to 
guide de novo drug design, rather than relying on a single framework to 
model all relevant properties accurately. Evolutionary algorithms like 
EvoMol and PASITHEA are highly interpretable. This quality is neces-
sary for facilitating the interdisciplinary advancement of de novo drug 
design methods. Finally, the new class of Transformer models has 
recently shown promise in expanding interpretability and 
synthesizability. 

5. Conclusions 

De novo drug design is one of many domains in which machine 
learning could inform human decision-making. Because machine 
learning algorithms are able to automate the recognition and prioriti-
zation of statistical patterns, they could also provide valuable new de-
tails about molecular structure and activity. In this systematic review, 
original research papers and review articles from the past five years 
were applied to extract information about trends in generative models 
for de novo drug design, challenges associated with the task, and formats 
utilized to encode data on chemical structure. LSTM-RNN, GAN, and 
VAE architectures appeared most frequently in the literature overall, but 
recent algorithms have yielded equally promising results. Eight major 
areas of concern were identified: the diversity, or lack thereof, of 
generated molecular libraries; the synthesizability of generated mole-
cules; the limited quantity of assay data; model interpretability; the 
demand for multi-property optimization; the ability to compare model 

Fig. 12. The relative frequencies of the various challenges in de novo drug 
design using machine learning observed in the review and their chronological 
progression. 
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performances; molecule size constraints; and measures of uncertainty in 
model evaluation. LSTM-RNN networks are optimized when combined 
with RL or TL. GANs require additional architecture support to prevent 
mode collapse. Adaptations of VAEs enabling the generation of more 
complex molecules and low-data learning were particularly successful. 
Mitigating errors related to these global problems requires adjustments 
to both the frameworks themselves and input adjustment. String-based 
representations of molecules were the most common, with SMILES 
being the most widespread format. 2D and 3D molecular graphs have 
also shown promise. Current methods may be expanded upon, and there 
is plenty of room for improvement. In the years to come, the exciting, 
rapid advancement of machine learning-aided drug discovery should be 
followed closely as an application of artificial intelligence in medicine. 
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